

Ceresana

Agenda: "Certified biodegradable polymers - From basic understanding to sustainable products"

1 Introduction

- 2 Certified soil biodegradable mulch film basics
- 3 Implementation Austria as case study
- 4 Conclusion and outlook

Mulch film increase crop yield via different functions

→ Mulch film is a plastic film which is specialized for different crops in agriculture.

Sustainability performance depends on material properties and application

Biodegradade completely in soil

Film Manufacturing

Carriage and Storage

Installation

Crop
Development

Plowing or Collection

Fallow Period

Next Cropping

Recollect and recycle

To achieve environmental performance thickness of PE film is defined by mechanical requirements for collection

- → Biodegradable mulch film (BDP): ~12 µm thickness
- → Polyethylene mulch film (PE): ≥25 μm thickness needed to ensure collection

BDP

Film Manufacturing

Carriage and Storage

Installation

Crop

Development

Plowing or Collection

Fallow Period

Next Cropping

The consequence of non-collection of PE films

- → Insufficient collection of PE mulch; Soil pollution leads to reduced yield of crops
- Generation of persistent microplastic

Conventional Plastics – e.g. LDPE

Fragmentation occurs via external processes such as mechanical treatment and creates persistent microplastic

A thinner soil biodegradable mulch film supports biodegradation performance – it goes hand in hand

- → Biodegradable mulch film (BDP): ~12 µm thickness
- → Polyethylene mulch film (PE): ≥25 μm thickness needed to ensure collection

BDP

Film Manufacturing

Carriage and Storage

Installation

Crop

Development

Plowing or Collection

Fallow Period

Next Cropping

Ceresana

Agenda: "Certified biodegradable polymers - From basic understanding to sustainable products"

- 1 Introduction
- 2 Certified soil biodegradable mulch film basics
- 3 Implementation Austria as case study
- 4 Conclusion and outlook

Biodegradability understanding

What is biodegradability?

Biodegradation = microorganisms metabolize the polymeric material completely to energy, CO₂, water & biomass (aerobic process)

Introduction

General mechanism of polymer biodegradation

Biodegradability 2.0

Holistic approach for biodegradability with different technologies and partnerships

Biodegradation pathways / fate of material

Biodegradable mulch film ecovio® M2351 mulch

End of life research

- Generate a fundamental understanding of the biodegradation process and fate of material
- Correlation of laboratory and field

ecovio® M2351 mulch – Biodegradation in soil according to ISO 17556

Decisive methods for understanding biodegradation in soil of ecovio® mulch film

Where does the polymer carbon end up?

Decisive methods for understanding biodegradation in soil of ecovio® mulch film

Where does the polymer carbon end up?

Microbial metabolism – CRDS technique to monitor polymer mineralization

- Cavity Ring Down Spectroscopy (CRDS) method is sensitive to ¹²C- & ¹³C-carbon dioxide
- Mineralization of stable isotope labeled polymers can be followed very accurately & positionspecifically

Conversion into microbial biomass

D-BASE

Decisive methods for understanding biodegradation in soil of ecovio[®] mulch film are established

Desorption

UV weathering followed by biodegradation test and structural polymer analytics

* modified by ¹³C labeling of the monomers

60 soils investigated

bound residues

clay soil organic Fe & Al mineral matter oxides

Soil extraction and (trace) analytics

700 organism identified

Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS)

Respirometric measurements (O₂ demand, CO₂ evolution)

Cavity ring down spectroscopy (CRDS)

ETH zürich

For the first time fate of polymer from soil biodegradable mulch film can be followed

Biodegradability 2.0

Holistic approach for biodegradability with different technologies and partnerships

standard development and stakeholder acceptance

> fate of material & enzymes

Biodegradability 2.0

Holistic approach for biodegradability with different technologies and partnerships

20

Ceresana

Agenda: "Certified biodegradable polymers - From basic understanding to sustainable products"

- **1** Introduction
- 2 Certified soil biodegradable mulch film basics
- 3 Implementation Austria as case study
- 4 Conclusion and outlook

To achieve environmental performance thickness of PE film is defined by mechanical requirements for collection

- → Biodegradable mulch film: ~12 µm thickness
- → Polyethylene mulch film: ≥25 µm thickness needed to ensure collection

BDP

Film Manufacturing Carriage and Storage

Installation

Crop **Development**

Plowing Collection

Fallow Period

Next Cropping

Biodegradable and biobased materials

Certified biodegradable materials: requirements for implementation

Academia

Industrial value chain

Politics

Public (press, NGO)

End of life company

Case studies for microplastic reduction

Austria as example for constructive discussion catalyzed by "Bündnis Mikroplatistikfrei Österreich" appointed by ministery for environment

Fact based disucssion

UBA Austria microplastic event, Vienna 2022

Dialogue

Dialogue with stakeholders, moderation "Bündnis Mikroplastikfrei" (Daniel Steinitz)

Concrete proposal

Walter Hauer (President Bündnis Mikroplastikfrei) and Leonore Gewessler (Federal Minister for Climate Action, Environment, Energy, Mobility, Innovation and Technology)

Proposal: Mulch film <25 μ m = certified soil biodegradable mulch film (no recollection possible \rightarrow biological recycling); >25 μ m = PE mulch film (recollection \rightarrow technical recycling)

Case studies for microplastic reduction

Biodegradable materials in agriculture and forestry

bündnis mikroplastik frei

Academia

Industrial value chain

Politics

Public (press, NGO)

End of life company

End of life infrastructure

- Reliable test methods (lab & environment)
- Biological and analytical tools for elucidation of biodegradation pathways (no persistent microplastic)
- Digital tools (data management, prediction)

Ceresana

Agenda: "Certified biodegradable polymers - From basic understanding to sustainable products"

- 1 Introduction
- 2 Certified soil biodegradable mulch film basics
- 3 Implementation Austria as case study
- **4** Conclusion and outlook

Case studies for microplastic reduction

Austria as example for constructive discussion catalyzed by "Bündnis Mikroplatistikfrei Österreich" appointed by ministery for environment

Fact based disucssion

UBA Austria microplastic event, Vienna 2022

Dialogue

Dialogue with stakeholders, moderation "Bündnis Mikroplastikfrei" (Daniel Steinitz)

Concrete proposal

Cá

0

Walter Hauer (President Bündnis Mikroplastikfrei) and Leonore Gewessler (Federal Minister for Climate Action, Environment, Energy, Mobility, Innovation and Technology)

Proposal: Mulch film <25 μ m = certified soil biodegradable mulch film (no recollection possible \rightarrow biological recycling); >25 μ m = PE mulch film (recollection \rightarrow technical recycling)

We create chemistry

ecovio lab/field tests in different soils (ETH Zürich, Agroscope) 2020 - 2023

Background and experimental set-up

- Comparability of mulch film biodegradation in lab & field
- ecovio M2351 film samples used for studies
- Extraction-based biodegradation studies and DNAextraction
- Respirometric/CO₂-evolution biodegradation studies and DNA extraction
- Sampling at different timepoints or at different level of biodegradation

- **Soil 1**: from a "Öko-Ausgleichsfläche"
- Soil 2: from a manure treated grassland
- Soil 3: from a normally treated agricultural field which just came off crop rotation